New Analytical Solutions of Fractional Complex Ginzburg-Landau Equation
نویسندگان
چکیده
منابع مشابه
Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملNonequilibrium dynamics of the complex Ginzburg-Landau equation: analytical results.
We present a detailed analytical and numerical study of nonequilibrium dynamics for the complex Ginzburg-Landau equation. In particular, we characterize evolution morphologies using spiral defects. This paper is the first in a two-stage exposition. Here, we present analytical results for the correlation function arising from a single-spiral morphology. We also critically examine the utility of ...
متن کاملsome new exact traveling wave solutions one dimensional modified complex ginzburg- landau equation
in this paper, we obtain exact solutions involving parameters of some nonlinear pdes in mathmatical physics; namely the one-dimensional modified complex ginzburg-landau equation by using the $ (g^{'}/g) $ expansion method, homogeneous balance method, extended f-expansion method. by using homogeneous balance principle and the extended f-expansion, more periodic wave solutions expres...
متن کاملThe Complex Ginzburg-landau Equation∗
Essential to the derivation of the Ginzburg-Landau equation is assumption that the spatial variables of the vector field U(x, y, t) are defined on a cylindrical domain. This means that (x, y) ∈ R ×Ω, where Ω ⊂ R is a open and bounded domain (and m ≥ 1, n ≥ 0), so that U : R ×Ω×R+ → R . The N ×N constant coefficient matrix Sμ is assumed to be non-negative, in the sense that all its eigenvalues a...
متن کاملBifurcating Vortex Solutions of the Complex Ginzburg-landau Equation
It is shown that the complex Ginzburg-Landau (CGL) equation on the real line admits nontrivial 2-periodic vortex solutions that have 2n simple zeros (\vortices") per period. The vortex solutions bifurcate from the trivial solution and inherit their zeros from the solution of the linearized equation. This result rules out the possibility that the vortices are determining nodes for vortex solutio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Universal Journal of Mathematics and Applications
سال: 2020
ISSN: 2619-9653
DOI: 10.32323/ujma.760899